
© 2021 Community Brands HoldCo, LLC. All rights reserved. Community Brands® and other Community Brands® products and services mentioned herein as well
as their respective logos are trademarks or registered trademarks of Community Brands HoldCo, LLC. All other product and service names mentioned are the
trademarks of their respective companies.

Getting Started
with the REST
API

Rest API Overview
The YM REST Services are a series of endpoints that can perform CRUD operations

(Create, Read, Update, Delete) on data for your online community. These services were

architected and built using the 5 required constraints in mind (the 6th constraint is an

optional constraint). These constraints are:

1. Uniform Interface: all endpoints are consistently formatted, and resources are

represented with all the information needed.

2. Client-Server separation: the client application and server application MUST be

able to evolve separately without any dependency on each other.

3. Stateless: all client-server interactions are stateless. The server will not store

anything about the latest HTTP request the client made. It will treat every request

as new. No session, no history.

4. Cacheable: caching is applied to resources when applicable. Caching can be

implemented on the server or client- side.

5. Layered System: architecture is layered to where the API can be hosted on a

separate instance than other components of the application (database, etc.).

The base URL for the REST API is https://ws.yourmembership.com. The endpoints that

pertain to your community site will start with /Ams, then contain more parameters based

on what resource the endpoint is interacting with.

Let's take the CampaignEmailList service as an example. The following list will show

each endpoint that interacts with this service:

Method Endpoint Description

GET /Ams/:ClientID/CampaignEmailLists
Return the

CampaignEmailList
s data.

GET /Ams/:ClientID/CampaignEmailLists/:ListId

Return the
CampaignEmailList

details and
records.

PUT /Ams/:ClientID/CampaignEmailLists/:ListId
Update the

CampaignEmailList

DELETE
 /Ams/:ClientID/CampaignEmailLists/:ListId

Delete the
CampaignEmailList
for a given List ID

DELETE

/Ams/:ClientID/CampaignEmailLists/:ListId/ListRecipientId/:ListRecipient
Id

Delete a Recipient
in the

CampaignEmailList
for a given List ID.

First, every endpoint in this service begins with /Ams to depict that it relates to your

community site. Then, you see some parameters encapsulated in curly braces. The

ClientID parameter is your site's unique numerical ID. This lets the service know "From

the Ams area, we are interacting with the data from ClientID."

Then, after we know which Client ID to bind the request to, we then access the

CampaignEmailLists service and all of its different endpoints. Based on what you do

next, you will either pull all the email lists in your site, return a specific one, update one,

etc.

To see all of the different services and what endpoints each service provides, refer to

the metadata page. This page will provide all of the services grouped by operation.

Each operation is depicted with a key symbol if it requires authentication.

The following sections will show how to authenticate and use that session for

subsequent requests.

Each operation will also contain different formats based on how you want to interact

with the API. The most common (and recommended) would be to use the JSON format.

Upon clicking on that link, you will see formal definitions around what parameters are

used in the request, what is returned in the response, and what endpoints are available.

How to authenticate to the REST API

Authenticating to the REST API as an administrator will require API keys (generated

from the administrative backend). You will not be able to use the same

username/password combination that is used to authenticate to the administrative

backend.

The endpoint that is used is the /Ams/Authenticate endpoint. The parameters that are

required are:

Parameter DataType Description
ClientID int The ID of your community site.
UserType String The type of user authenticating.

This should be set to “Admin”.
Username String The generated username key.
Password String The generated password key.

After posting to the endpoint, a successful authentication will return the following

information:
Parameter DataType Description
ClientID Int The ID of your community site.
MemberID Int The member record you are

authenticated to. This would be
a 0 for administrators.

FailedLoginReason String A response as to why a login
may fail. A successful
authentication will return
“None”.

UserId String The unique GUID associated
with your login.

SessionId String The ID created for your
session.

ResponseStatus String Any information pertaining to
the status. This will be blank for
successful responses.

The SessionId in the table above is what is used on subsequent calls as an

authentication header. This key is labeled x- ss-id. A session can be alive for 15

minutes before it expires. After expiration, you can re-authenticate for a new Session ID.

Examples

Let's take some example keys and ClientID.

Note: for security purposes, the real ClientID and UserId from the requests and

responses will be blurred. These examples will do the following:

1. Authenticate to the REST API.

2. Pull a page of my first 5 email lists.

Just as a reminder, the base URL is https://ws.yourmembership.com. If you are

following along, I will be using Postman to make these requests. First, I set up a POST

request to the /Ams/Authenticate endpoint with the parameters listed in the table above.

After POSTing the request, I am given a response with my appropriate IDs, including

the Session ID.

Since I have my Session ID, I can now make a call to the add that value to the x-ss-id

header value for the next request. To get a list of my email lists, I would need to make a

GET call to the /Ams/{ClientID}/CampaignEmailLists endpoint. The ClientID parameter

in the endpoint will be replaced with my actual Client ID.

One important thing to note is the query string parameters AFTER the endpoint. This

query starts by adding a question mark (?) after the endpoint, assigning the values to

keys with the equals symbol (=), and separated by an ampersand (&). In this example, I

wanted:

1. To start on the first page (PageNumber is 1).

2. Get the first 5 results of that page (PageSize is 5).

Putting it together, it would be:

https://ws.yourmembership.com/Ams/:ClientID/CampaignEmailLists?PageSize=5

&PageNumber=1

The result of this would be shown below:

The CampaignEmailLists would show the 5 as requested. But here are some important

things to note. Although I do see my first 5 lists (currently collapsed in my UI), the

ListCount key shows that I actually have 13 in total. Therefore, if I wanted to increase

my PageSize to 13, I could do so to get all my lists at the same time. Subsequently, if

you had a large amount of lists, and you were trying to build a paging component in a

third party application, you can better determine what your page size should be or know

when you have reached the end of your data.

Additional Resources

Metadata: https://ws.yourmembership.com/metadata

Swagger UI: https://ws.yourmembership.com/swagger-ui/

