

© 2021 Community Brands HoldCo, LLC. All rights reserved. Community Brands® and other Community Brands® products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of Community Brands HoldCo, LLC. All other product and service names mentioned are the trademarks of their
respective companies.

Getting Started
with OAuth

Overview
The general OAuth flow consists of the following steps:

1. The user signs in on your YM site and authorizes your app.

2. Get the code from the authorization and get the access token.

3. Use the access token to authenticate the user.

4. Use the session from the authentication to make calls to the API on behalf of the

user (e.g., getting prole

Getting the user’s authorization

In order to get the user's authorization, you need to have them log in from a specific

path on your site (lock.aspx) along with some parameters. Let's take the following table

and add example to them:

Parameter Description Example
Base URL Primary URL for your YM site https://www.professional.com
app_id The App ID of your OAuth app as

generated in YM
AbCdEfG12345

Redirect_uri The redirect URL, as entered in your
OAuth app

https://members.pro.app/callback

Scope The scope(s) established in your
OAuth app: basic_profile, full_profile,
or both (basic_profile, full_profile)

basic_profile

Taking these values, we would build the URL as follows:

https://www.professional.com/lock.aspx?app_id=AbCdEfG12345&redirect_uri=https://m

embers.pro.app/callback&scope=basic_profile

The parameters can be in any order, but this is where you would direct your members to

sign in and authorize the application. On successful authorization, the browser will

redirect to your redirect URL

(e.g., https://members.pro.app/callback) with a query string parameter "code" that is

used to get the access token (e.g.,

https://members.pro.app/callback?code=code101010).

Getting the access token

After authorization and getting redirected to the redirect URL, this route should be

handling the code that is passed as a query string. The parameter is labeled as "code"

and is used with the GetAccessToken service in the REST API. Continuing on our

example, here are the parameters needed:

Parameter Description Example
GetAccessToken Route The route to get the access token /OAuth/GetAccessToken
AppID The App ID of the OAuth app as

generated in YM
AbCdEfG12345

AppSecert The App Secret of your OAuth
app as generated in YM

SECRETAbCdEfG12345

GrantType The grant type to get the Access
Token. Possible values: Code,
RefreshToken

Code

*Code The code from the authorization
step

Code101010

*RefreshToken The refresh token of the record in
question

Refresh101010

In this case, we would be using the Code parameter and not the RefreshToken

parameter. The refresh token is used when you already have the refresh token and

need to get a new access token. Once you have all your parameters, you would make

the following call:

Endpoint Type
https://ws.yourmembership.com/OAuth/GetAccessToken POST
Body

{
 AppId: "AbCdEfG12345",
 AppSecert: "SECRETAbCdEfG12345",
 GrantType: "Code",
 Code: "code101010"
}

A successful response from this call will return a series of datapoints including the

AccessToken and its expiration. This token will be used to authenticate to the REST

Services. For this example, let's say the access token returned was a1b2c3d4e5.

Authenticating the user to services

Now that you have the access token, you can now pass that to the Auth service to get

the necessary session created. Continuing on our example, here are the parameters

needed:

Parameter Description Example
Auth Route The route to authenticate to services /Ams/Authenticate
ConsumerKey The App ID of your OAuth app as

generated in YM
AbCdEfG12345

ConsumerSecret The App Secret of your OAuth app as
generated in YM

SECRETAbCdEfG12345

AccessToken The access token returned from the
GetAccessTokenService

A1b2c3d4e5

ClientID The ID of your YM site 12345
UserType The type of user authenticating to the

service. Possible values: Admin, Member
Member

Once you have all of your parameters situated, you would make the following call:

Endpoint Type
https://ws.yourmembership.com/Ams/Authenticate POST
Body

{
 ConsumerKey: "AbCdEfG12345",
 ConsumerSecret: "SECRETAbCdEfG12345",
 AccessToken: "a1b2c3d4e5",
 ClientID: 12345,
 UserType: "Member",
}

A successful authentication will return another series of values including two very

important values:

• SessionId: The value to be passed into the “X-SS-ID” header for subsequent

requests.

• MemberId: The ID to be passed in any path variables for the member.

These two, in conjunction with the ClientID, will be sued to make calls to other services

as needed.

Getting the authenticated user’s profile information

Since we authenticated the user with the Auth service, we can now use the Session ID,

the Member ID, and the Client ID to get the member's prole information using the

BasicMemberProfile service. We are using this service versus the MemberProfile

service as our application is only using the basic_profile scope. Continuing our example,

here are the parameters needed:

Parameter Description

Example

BasicMemberProfile Route

The route
to get the
user’s
information

/Ams/:ClientID/Member/:MemberID/BasicMemberProfil
e

X-SS-ID The
SessionId
returned
from the
auth service

AUTH123

ClientID The ID of
your YM
site

12345

MemberID The ID of
your
member
record as
returned
from the
auth service

987654321

Once you have all of your parameters situated, you would make the following call:

Endpoint Type
/Ams/12345/Member/987654321/BasicMemberProfile GET
Headers

{
 …
 X-SS-ID: ”AUTH123”,
 …
}

